Learning Rules to Improve a Machine Translation System

نویسندگان

  • David Kauchak
  • Charles Elkan
چکیده

In this paper we show how to learn rules to improve the performance of a machine translation system. Given a system consisting of two translation functions (one from language A to language B and one from B to A), training text is translated from A to B and back again to A. Using these two translations, differences in knowledge between the two translation functions are identified, and rules are learned to improve the functions. Context-independent rules are learned where the information suggests only a single possible translation for a word. When there are multiple alternate translations for a word, a likelihood ratio test is used to identify words that co-occur with each case significantly. These words are then used as context in context-dependent rules. Applied on the Pan American Health Organization corpus of 20,084 sentences, the learned rules improve the understandability of the translation produced by the SDL International engine on 78% of sentences, with high precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Using machine learning to improve rule-based machine translation

We present an experiment of using transformation-based learning for improving translation quality of a rule-based machine translation system by means of post-processing. Transformation rules are learned based on a parallel corpus of machine translation output and a human-corrected version of the output. The experiment resulted in a significant increase in translation quality of 0.8 measured usi...

متن کامل

An Improvement in the Selection Process of Machine Translation Using Inductive Learning with Genetic Algorithms

We proposed a method of machine translation using inductive learning with genetic algorithms, and confirmed the effectiveness of applying genetic algorithms. However, the system based on this method produces many erroneous translation rules that cannot be completely removed from the dictionary. Therefore, we need to improve how to apply genetic algorithms to be able to remove erroneous translat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003